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1 Motivation 

In recent years there has been an increase in the number of catastrophes and crises that have negatively 

affected society, its systems, and processes. Some examples of these events are the global pandemic of 

COVID-19 from 2020, the earthquake in Turkey and Syria in February 2023, as well as the floods and 

extreme rainfall in Germany in 2021 and in 2024. 

 

One of the most important components of today’s society, and at the same time most vulnerable to 

these crises, have been the critical infrastructure (CI) systems. These systems provide essential services 

such as health care, electricity, telecommunications, transportation, etc. Hence, experts in safety and 

security engineering as well as crisis management have recently been interested in analyzing these CI 

systems' resilience [1].  

 

However, one of the main characteristics of CI systems is their high level of interdependence at 

different levels and facets [2]. This means that failures in one system can propagate and cause 

unexpected cascading effects in other systems. For instance, the surge in COVID-19 cases had a ripple 

effect on various critical infrastructure systems. It significantly affected the job market as companies 

downsized or closed, impacting the economic system. This workforce reduction, along with health 

protection measures taken due to rising cases, disrupted other systems, such as transportation, 

decreasing air travel. 

 

Therefore, modeling and simulating interdependencies and cascading effects in these complex CI 

systems has become vital for resilience analyses [3]. However, these analyses demand high-quality and 

trustworthy data of various kinds [1]. Following the previous example, an exhaustive resilience analysis 

requires diverse data from various actors, such as COVID-19 case numbers, reported job positions, 

short-time workers, unemployed individuals, and flight departures and arrivals. This diverse data and its 

interoperability are crucial for a comprehensive understanding of the situation. 

 

Currently, crisis managers and resilience experts face significant challenges due to the absence of 

standardized methodologies for collecting, managing, and aggregating the heterogeneous and 

decentralized data essential for their analyses. Therefore, for municipal resilience analysis, a trusted 

network for data sharing and interoperability of the data provided is paramount.  

 

To overcome these challenges and enable cascading effects analysis, this position paper describes how 

semantic interoperability within the resilience data space is exploited for a specific application.  
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2 State of the art in cascading effects analysis 

As highlighted in the previous section, CI systems become increasingly vulnerable when disruptive 

events trigger cascading effects, affecting a larger number of their components [4]. Traditional risk 

analysis methods, which typically focus on single systems, prove insufficient under these circumstances 

due to the necessity of domain expert knowledge and their lack of consideration for complex, 

interconnected systems [2]. Therefore, it has become essential to research more advanced methods that 

allow modeling the interdependencies of CI systems for resilience analysis [5]. 

Research into modeling methods for interdependent CI systems has been extensive [6], [7], [8], yet few 

studies incorporate the concept of resilience as comprehensively as the classification proposed by 

Ouyang [3]. Ouyang groups these methods into six categories: (1) Agent-based approaches that 

simulate CI systems as networks of interacting agents [9], (2) System dynamics-based approaches that 

utilize causal-loop diagrams [10], (3) Economic theory-based approaches employing models like input-

output and computable general equilibrium [11], (4) Network-based approaches that depict CI systems 

through nodes and interlinks [3], (5) Empirical approaches which derive insights from historical data and 

expert experiences [3], and (6) Other statistical methods like Bayesian networks and Granger causality 

tests to describe the causality and dynamic behavior of interdependencies within CI systems. 

Since each method has its advantages and weaknesses, comparing them to each other and choosing 

the most appropriate one depends on the application context. However, researchers such as Ouyang 

[3], Trucco et al.[13], and Dao et al. [1], identify three limitations and challenges faced by the methods 

previously mentioned: 

1. Incomplete modeling: Many approaches focus only on subsets of CI systems, not capturing all 

necessary components and their interconnections comprehensively. 

2. Integration and co-simulation difficulties: Integrating different models from various 

approaches is complex due to methodological differences and the need for domain expertise. 

3. Heterogeneous and decentralized data: Data-driven methods face challenges in accessing 

and integrating diverse data from various domains which are often stored and owned by 

different stakeholders. 

The development of a Resilience Data Space powered by semantic technologies provides effective 

solutions to these complex challenges. On the one hand data spaces enable the automated sharing of 

diverse decentralized data from trusted actors, facilitating the analysis of potential cascading effects 

across different CI systems. On the other hand, semantic technologies provide “a systematic 

representation of heterogeneous systems in terms of entities and their interdependencies for study and 

simulation purposes” [14]. By employing semantic-based structures, such as ontologies and knowledge 

graphs, semantic interoperability within the data space can be ensured, effectively formalizing, and 

modeling the meaning and context of data, regardless of their heterogeneity or decentralization. 

3 Semantic Interoperability in the Resilience Data Space 

The primary goal of the Resilience Data Space is to enhance data-driven decision-making in scenarios 
that demand high reliability and rapid response, such as crisis management and resilience analyses of 
critical infrastructure systems. A critical element in achieving this is trust and semantic interoperability, 
ensuring that data from diverse sources can be integrated and understood in a unified manner. For 
systems interoperability among the various actors, the technologies and standards of the International 
Data Spaces are employed within the Resilience Data Space. The Eclipse Data Space connector  [15] 
enables technical interoperability of the systems, facilitating data exchange and consumption between 
public institutions at different governmental levels —country, state, and municipality— for resilience 
analysis. 
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Semantic interoperability is crucial in any data space, enabling actors to effectively share, interpret, and 
use data while maintaining consistency and accuracy across various datasets and domains. It is 
particularly vital in crisis management, where it fosters trust in data for decision-making. Within the 
Resilience Data Space, a semantic data catalog serves as a data fabric, interconnecting and aggregating 
data while adhering to the following requirements regarding the knowledge provided by the data:  
 

i. Origin: Clear documentation of where and how data is sourced, ensuring authenticity and 
reliability. 

ii. Data Structure: For AI-ready data, the relevant dimensions as well as the timely and 
geographical resolution of data must be machine-readable. 

iii. Data Quality: To ensure trustworthy analysis results, information about the quality of a dataset 
using metrics like completeness and consistency is needed.  
 

A standardized metadata schema is adopted in response to these requirements and in alignment with 
the International Data Spaces Information Model [16]. This schema is based on the Data Catalog 
Vocabulary (DCAT) [17], a RDF vocabulary designed to enhance interoperability between web-published 
data catalogs. Specifically, the DCAT Application Profile for data portals in Germany (DCAT-AP.de [18]) 
is employed as the foundation for the semantic data model in the Resilience Data Space.DCAT-AP.de 
provides comprehensive metadata that enhances the general understanding and usability of data, 
describing key aspects of the datasets like timely and geographical resolution, to trace back the origin 
and context of the data (i.). Moreover, the RDF Data Cube Vocabulary [19] defines the dataset’s 
dimensions and structure (ii.). Finally, the use of the Data Quality Vocabulary [20] ensures that all 
datasets in the Resilience Data Space are enriched with detailed information on data quality (iii.), 
modeling the consistency or completeness of the data. 
 
By leveraging IDS components in combination with standardized and interconnected vocabularies, the 
Resilience Data Space ensures that data from various sources is not only technically and semantically 
interoperable but also adheres to high standards of quality and reliability, crucial for the contexts in 
which it is intended to be used. 

4 A knowledge graph-based approach to analyze cascading effects in CI 

systems 

Building on the aforementioned semantic interoperability foundations within the Resilience Data Space, 

a knowledge-graph-based approach was developed for modeling CI interdependencies discovered 

using statistical methods on heterogeneous and decentralized data from these systems. 

This approach comprises three key steps: (1) data selection, (2) statistical interdependency analysis, and 

(3) semantic modeling of interdependencies into a knowledge graph. This semantic graph subsequently 

serves as a robust platform for knowledge retrieval for identifying and visualizing cascading effects 

within CI systems, providing crisis managers with a comprehensive and explainable view of potential 

impacts and vulnerabilities. To illustrate this approach, let's revisit the COVID-19 pandemic scenario 

from the motivation section, where the surge in cases affected the job market and air transportation. 

In the data selection (1), relevant metadata of the datasets related to a specific CI is retrieved from the 

semantic data catalog. Taking the “Infektionen” dataset as an example, which reflects the number of 

COVID-19 infections in Germany, the use of semantic vocabularies in the data space discloses that the 

dataset is in CSV format, covers Germany at the federal level, and updates daily (see Figure 1). This 

semantically represented metadata provides crucial insights about the dataset's origin and context.  
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Figure 1: Snapshot from GraphDB [21] showing metadata retrieval for the "Infektionen" dataset, including format, geographical and 

temporal resolution, access URL, and theme. 

The first step of the statistical interdependency analysis (2) is data acquisition and cleaning. The 

interdependencies between the datasets are then quantified using statistical methods such as the 

Pearson correlation [22] and the Granger causality test [23] in an automatic fashion. The resulting 

pearson-correlation-coefficient and granger-test-p-value for each interdependency are semantically 

modeled in a knowledge graph (3) and interlinked with the metadata from the data catalog related to 

these datasets. 

In this knowledge graph, the interdependencies calculated statistically are represented as RDF triples, 

indicating that a Dataset1 has an impact on a second Dataset 2 (see left side of Figure 2). For 

quantification of this impact between the nodes, RDF-star [24] is used to add the information of the 

concrete value of this interdependency using the pearson-correlation-coefficient and the and granger-

test-p-value (see right side of Figure 2). 

 

Figure 2: RDF (left) and RDF-star (right) model of interdependencies between datasets from CI systems. 

By using queries that implement graph path search algorithms to traverse the knowledge graph, 

potential paths reflecting the sequence of repercussions between source, intermediate, and/or 

destination nodes can be identified. When combined with the enriched information about the 

interdependencies and metadata of the CI datasets, this provides crisis managers with valuable insights 

for identifying and visualizing cascading effects and their context. Additionally, the calculated 

interdependency values can be used to filter query the results within a significance range defined by a 

Pearson correlation or Granger causality test. 
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Following the example in this section, a query on the knowledge graph using the mentioned 

algorithms, with the number of COVID-19 infections, “Infektionen”, as the source node and Frankfurt 

Airport departures, “F_FRA”, as the destination node, generates an automatic cascade of 

interdependencies. This chain, which has a maximum path length of 3 and filters interdependencies 

based on a Granger causality test p-value significance of 𝑎 = 0.05, is shown in Figure 3. 

Figure 3: Snapshot from GraphDB 

showing the cascade of interdependencies 

between COVID-19 infections and 

Frankfurt Airport departures, filtered by 

Granger causality test p-value significance 

of 𝑎 = 0.05. Values are manually added 

due to visualization limitations in the 

software. 

 

 

 

 

 

The visualization shown in Figure 3 allows the crisis manager to identify the cascading effects triggered 

by the rise in COVID-19 cases. It reveals that this source event impacted the number of job positions, 

which in turn affected the number of flight departures at Frankfurt airport. The information contained 

in the triple’s edges, added manually to Figure 3 for explanation purposes due to RDF-star visualization 

limitations in graph database GraphDB [21], provides statistical evidence of the interdependencies 

based on the Granger causality test. This enhances trust and explainability of the displayed 

interdependencies. Lastly, the provided interactive visualization allows intuitive graph navigation and 

node expansion to gain more context on the datasets by visualizing the metadata values (see Figure 2) 

5 Conclusions and Outlook 

The Resilience Data Space enables cascading effects analysis by ensuring semantic interoperability. A 

knowledge graph-based approach built on this foundation effectively identifies and visualizes potential 

impacts in critical infrastructure systems, as demonstrated in the COVID-19 scenario. This approach 

enhances decision-making in crisis management, contributing to a more explainable CI resilience 

analysis.  

Since the technologies presented in this paper are still under development, there is room for 

improvement. Enhancements could include better visualization of cascading effects using Labeled 

Property Graphs (LPG), research on more advanced algorithms for quantifying interdependencies, and 

further development of the Resilience Data Space’s architecture and its components. 
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